首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80339篇
  免费   14491篇
  国内免费   8983篇
化学   55935篇
晶体学   816篇
力学   5308篇
综合类   457篇
数学   9406篇
物理学   31891篇
  2024年   80篇
  2023年   1697篇
  2022年   1811篇
  2021年   2654篇
  2020年   3495篇
  2019年   3269篇
  2018年   2858篇
  2017年   2642篇
  2016年   3964篇
  2015年   3843篇
  2014年   4589篇
  2013年   5937篇
  2012年   7573篇
  2011年   7761篇
  2010年   5247篇
  2009年   5031篇
  2008年   5450篇
  2007年   4844篇
  2006年   4369篇
  2005年   3640篇
  2004年   2809篇
  2003年   2191篇
  2002年   1951篇
  2001年   1659篇
  2000年   1493篇
  1999年   1652篇
  1998年   1391篇
  1997年   1359篇
  1996年   1356篇
  1995年   1112篇
  1994年   1001篇
  1993年   821篇
  1992年   731篇
  1991年   633篇
  1990年   547篇
  1989年   417篇
  1988年   359篇
  1987年   287篇
  1986年   270篇
  1985年   228篇
  1984年   162篇
  1983年   116篇
  1982年   89篇
  1981年   74篇
  1980年   66篇
  1979年   34篇
  1978年   31篇
  1977年   42篇
  1976年   31篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
41.
A strategy based on covalent organic frameworks for ultrafast ion transport involves designing an ionic interface to mediate ion motion. Electrolyte chains were integrated onto the walls of one-dimensional channels to construct ionic frameworks via pore surface engineering, so that the ionic interface can be systematically tuned at the desired composition and density. This strategy enables a quantitative correlation between interface and ion transport and unveils a full picture of managing ionic interface to achieve high-rate ion transport. Moreover, the effect of interfaces was scaled on ion transport; ion mobility is increased in an exponential mode with the ionic interface. This strategy not only sets a benchmark system but also offers a general guidance for designing ionic interface that is key to systems for energy conversion and storage.  相似文献   
42.
通过微波法制备了CaMoO4:Tb3+,Eu3+白色荧光粉.采用X射线粉末衍射仪、扫描电子显微镜和荧光光谱仪对样品材料的结构、形貌和发光性能进行了表征.分别讨论了在不同助剂、不同反应浓度、不同反应温度及稀土离子Eu3+和Tb3+共掺比例变化对荧光粉的发光性能的影响.结果表明:不加活性剂所得CaMoO4:Tb3+,Eu3+样品在反应浓度为0.06 mol/L、反应温度为120℃时发光性能最好;通过调节CaMoO4:Tb3+,Eu3+荧光粉中稀土离子Eu3+和Tb3+共掺比例荧光粉的发光颜色可以很容易地从冷白光变为暖白光.  相似文献   
43.
With coal mining entering the geological environment of “high stress, rich gas, strong adsorption and low permeability,” the difficulty of joint coal and gas extraction clearly augments, the risk of solid–gas coupling dynamic disasters greatly increases, and the underlying mechanisms become more complex. In this paper, based on the characteristics of coal’s multi-scale structure and spatiotemporal variation, the multi-scale fractured coal gas–solid coupling model (MSFM) was built. In this model, the interaction between coal matrix and its fractures and the mechanical characteristics of gas-bearing coal were considered, as well as their coupling relationship. By MATLAB software, the stress–damage–seepage numerical computation programs were developed, which were applied into Comsol Multiphysics to simulate gas flow caused by coal mining. The simulation results showed the spatial variability of coal elastic modulus and cross-flow behaviors of coal seam gas, which were superior to the results of traditional gas–solid coupling model. And the numerical results obtained from MSFM were closer to the measured results in field, while the computation results of traditional model were slightly higher than the measured results. Furthermore, the MSFM in a large scale was verified by field engineering project.  相似文献   
44.
Fluorescence probes in the NIR-IIa region show drastically improved imaging owing to the reduced photon scattering and autofluorescence in biological tissues. Now, NIR-IIa polymer dots (Pdots) are developed with a dual fluorescence enhancement mechanism. First, the aggregation induced emission of phenothiazine was used to reduce the nonradiative decay pathways of the polymers in condensed states. Second, fluorescence quenching was minimized by different levels of steric hindrance to further boost the fluorescence. The resulting Pdots displayed a fluorescence QY of ca. 1.7 % in aqueous solution, suggesting an enhancement of ca. 21 times in comparison with the original polymer in tetrahydrofuran (THF) solution. Small-animal imaging by using the NIR-IIa Pdots exhibited a remarkable improvement in penetration depth and signal to background ratio, as confirmed by through-skull and through-scalp fluorescent imaging of the cerebral vasculature of live mice.  相似文献   
45.
Journal of Radioanalytical and Nuclear Chemistry - Highly deficient strontium cobaltite (SrCoOx), as a new nanomaterial that is thermally treated at low temperature...  相似文献   
46.
Chen  Yujie  Sang  Weixuan  Chen  Rong  Liu  Xue  Li  Xiaoyan  Guan  Fenfen  Li  Xun  Xiao  Hui 《Journal of Radioanalytical and Nuclear Chemistry》2020,324(1):367-373
Journal of Radioanalytical and Nuclear Chemistry - The nanoscale zero-valent nickel (nano-Ni0) was prepared by liquid-phase reduction method and characterized by BET, XPS, FT-IR and XRD and be used...  相似文献   
47.
对硫化镉反蛋白石结构光子晶体薄膜进行了可控合成,用巯基乙酸修饰的纳米晶和P(St-MMA-SPMAP)高分子小球共组装,成功地构筑了反蛋白石结构并用于可见光光解水产氢。结果表明,在可见光(λ≥420 nm)照射下,Cd S-310反蛋白石结构薄膜的光解水产氢性能比硫化镉纳米颗粒提高了一倍。这主要是因为等级孔结构反蛋白石光子晶体特性对催化剂的光催化性能的提升:首先,反蛋白石的周期性结构增加了光子在材料中的传播,提高了催化剂对太阳光的利用率;同时,大孔孔壁是由纳米颗粒堆积而成的,在反应中提供了更多的反应活性位点;此外,孔结构有利于物质的传输和分子的吸附。  相似文献   
48.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
49.
Albomycin δ2 is a sulfur-containing sideromycin natural product that shows potent antibacterial activity against clinically important pathogens. The l -serine-thioheptose dipeptide partial structure, known as SB-217452, has been found to be the active seryl-tRNA synthetase inhibitor component of albomycin δ2. Herein, it is demonstrated that AbmF catalyzes condensation between the 6′-amino-4′-thionucleoside with the d -ribo configuration and seryl-adenylate supplied by the serine adenylation activity of AbmK. Formation of the dipeptide is followed by C3′-epimerization to produce SB-217452 with the d -xylo configuration, which is catalyzed by the radical S-adenosyl-l -methionine enzyme AbmJ. Gene deletion suggests that AbmC is involved in peptide assembly linking SB-217452 with the siderophore moiety. This study establishes how the albomycin biosynthetic machinery generates its antimicrobial component SB-217452.  相似文献   
50.
Zhang  Yan  Liu  Yinping  Tang  Xiaoyan 《Nonlinear dynamics》2018,93(4):2533-2541
Nonlinear Dynamics - This paper aims at computing M-lump solutions for the $$(3+1)$$ -dimensional nonlinear evolution equation. These solutions in all directions decline to an identical state...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号